Mathématiques

Question

Bonsoir , s'il vous plait quelqu'un pourrai m'aider je n'est pas beaucoup de temps pour faire mes devoirs a cause dun probleme familial et je narrive pas au exercices suivant donc si quelqu'un pourrai maider se serai gentille , merci d'avance !
Bonsoir , s'il vous plait quelqu'un pourrai m'aider je n'est pas beaucoup de temps pour faire mes devoirs a cause dun probleme familial et je narrive pas au exe
Bonsoir , s'il vous plait quelqu'un pourrai m'aider je n'est pas beaucoup de temps pour faire mes devoirs a cause dun probleme familial et je narrive pas au exe

1 Réponse

  • Explications étape par étape

    Exercice 33

    On a AB = HC = GD = FE = 6,3 cm

    On a AH = FG = ED = BC = 4,7 cm

    On a FA = GH = DC = EB = 3,1 cm

    On calcule AC

    AC² = AB² + BC²

    AC² = 6,3² + 4,7²

    AC² = 39,69 + 22,09

    AC² = 61,78 donc AC = √ 61,78 ≈ 7,9 cm

    La longueur AC est égale à 7,9 cm.

    On calcule AD

    AD² = AC² + DC²

    AD² = 7,9² + 3,1²

    AD² = 62,41 + 9,61

    AD² = 72,02 donc AD = √ 72,02 ≈ 8,5 cm

    La longueur AD est égale à 8,5 cm.

    On calcule la mesure de DAC

    Tu peux utiliser une des trois relations trigonométriques :

    ( cosinus, sinus ou tangente )

    J'utilise le cosinus :

    cosinus DAC = AC / AD

    cosinus DAC = 7,9 / 8,5

    arccos DAC ≈ 21,65° soit 22°.

    La mesure de l'angle DAC est de 22°.

    Exercice 39

    Tu utilises le théorème de Thalès :

    On note OB = 3,6 + 1,2 = 4,8 m ; OA = 1,2 m et AC = 2,3 m

    On note BS = x

    OA / OB = OC / OS = AC / BS

    1,2 / 4,8 = 2,3 / x = OC / OS

    1,2 / 4,8 = 2,3 / x

          1,2x = 4,8 * 2,3

              x = 11,04 / 1,2

              x ≈ 9,2

    La hauteur de l'horloge est égale à 9,2 mètres.